
1SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Introduction to PGAS (UPC and CAF) and
Hybrid for Multicore Programming

Tutorial S10 at SC10,

November 14, 2010, New Orleans, LA, USA

Alice E. Koniges – NERSC, Lawrence Berkeley National Laboratory (LBNL)

Katherine Yelick – University of California, Berkeley and LBNL

Rolf Rabenseifner – High Performance Computing Center Stuttgart (HLRS), Germany

Reinhold Bader – Leibniz Supercomputing Centre (LRZ), Munich/Garching, Germany

David Eder – Lawrence Livermore National Laboratory

Filip Blagojevic and Robert Preissl – Lawrence Berkeley National Laboratory

http://www.nersc.gov/

2SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Outline

• Basic PGAS concepts (Katherine Yelick)

– Execution model, memory model, resource mapping, …

– Standardization efforts, comparison with other paradigms

 Exercise 1 (hello)

• UPC and CAF basic syntax (Rolf Rabenseifner)

– Declaration of shared data / coarrays, synchronization

– Dynamic entities, pointers, allocation

 Exercise 2 (triangular matrix)

• Advanced synchronization concepts (Reinhold Bader)

– Locks and split-phase barriers, atomic procedures, collective operations

– Parallel patterns

 Exercises 3+4 (reduction+heat)

• Applications and Hybrid Programming (Alice Koniges, David Eder)

 Exercise 5 (hybrid)

• Appendix

https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html
(the pdf includes additional “skipped” slides)

3SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Basic PGAS Concepts

 Basic PGAS concept
• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Hybrid Programming

and outlook

https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html

o Trends in hardware

o Execution model

o Memory model

o Run time environments

o Comparison with other paradigms

o Standardization efforts

Hands-on session: First UPC and CAF exercise

4SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Moore‟s Law with Core Doubling
Rather than Clock Speed

1,E-01

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (in Thousands)

Frequency (MHz)

Power (W)

Perf

Cores

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,

Burton Smith, Chris Batten, and Krste Asanoviç

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Hybrid Programming

and outlook

5SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Concurrency was Part of the
Performance Increase in the Past

Exascale Initiative Steering Committee

and power, resiliency, programming models, memory bandwidth, I/O, …

CM-5

Red Storm

Increased parallelism

performance while the

clock speed increased

Increased parallelism

allowed a 1000-fold

increase in

performance while the

clock speed increased

by a factor of 40

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Hybrid Programming

and outlook

6SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Memory is Not Keeping Pace

Technology trends against a constant or increasing memory per core

• Memory density is doubling every three years; processor logic is every two

• Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Source: David Turek, IBM

Cost of Computation vs. Memory

Question: Can you double concurrency without doubling memory?

Source: IBM

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Hybrid Programming

and outlook

7SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Where the Energy Goes

1

10

100

1000

10000

P
ic

o
J

o
u

le
s

now

2018

Intranode/MPI

Communication

On-chip / CMP

communication

Intranode/SMP

Communication

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

8SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Summary of Hardware Trends

• All future performance increases will be from concurrency

• Energy is the key challenge in improving performance

• Data movement is the most significant component of energy use

• Memory per floating point unit is shrinking

Programming model requirements

• Control over layout and locality to minimize data movement

• Ability to share memory to minimize footprint

• Massive fine and coarse-grained parallelism

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

9SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Partitioned Global Address Space
(PGAS) Languages

• Coarray Fortran (CAF)

– Compilers from Cray, Rice and PGI (more soon)

• Unified Parallel C (UPC)

– Compilers from Cray, HP, Berkeley/LBNL, Intrepid (gcc), IBM,

SGI, MTU, and others

• Titanium (Java based)

– Compiler from Berkeley

DARPA High Productivity Computer Systems (HPCS) language

project:

• X10 (based on Java, IBM)

• Chapel (Cray)

• Fortress (SUN)

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

10SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Two Parallel Language Questions

• What is the parallel control model?

• What is the model for sharing/communication?

implied synchronization for message passing, not shared memory

data parallel

(singe thread of control)
dynamic

threads

single program

multiple data (SPMD)

shared memory

load

store

send

receive

message passing

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

11SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

SPMD Execution Model

• Single Program Multiple Data (SPMD) execution model

– Matches hardware resources: static number of threads for static

number of cores no mapping problem for compiler/runtime

– Intuitively, a copy of the main function on each processor

– Similar to most MPI applications

• A number of threads working independently in a SPMD fashion

– Number of threads given as program variable, e.g., THREADS

– Another variable, e.g., MYTHREAD specifies thread index

– There is some form of global synchronization, e.g., upc_barrier

• UPC, CAF and Titanium all use a SPMD model

• HPCS languages, X10, Chapel, and Fortress do not

– They support dynamic threading and data parallel constructs

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

12SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Data Parallelism – HPF

Real :: A(n,m), B(n,m)

do j = 2, m-1

do i = 2, n-1

B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)

end do

end do

Loop over y-dimension

Vectorizable loop over x-dimension

Calculate B,

using upper and lower,

left and right value of A

Data definition

!HPF$ DISTRIBUTE A(block,block), B(...)

• Data parallel languages use array operations (A = B, etc.) and loops

• Compiler and runtime map n-way parallelism to p cores

• Data layouts as in HPF can help with assignment using “owner computes”

• This mapping problem is one of the challenges in implementing HPF that
does not occur with UPC and CAF

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

13SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

cilk int fib (int n) {

1);
2);

}

cilk int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync;
return (x+y);

}
}

Dynamic Tasking - Cilk

The computation dag and
parallelism unfold dynamically.

processors are virtualized;
no explicit processor number

• Task parallel languages are typically implemented with shared memory

• No explicit control over locality; runtime system will schedule related
tasks nearby or on the same core

• The HPCS languages support these in a PGAS memory model which
yields an interesting and challenging runtime problem

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

14SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Partitioned Global Address Space
(PGAS) Languages

• Defining PGAS principles:

1) The Global Address Space memory model allows any thread to

read or write memory anywhere in the system

2) It is Partitioned to indicate that some data is local, whereas other

date is further away (slower to access)

Partitioned Global Array

Local
access

Global
access

Private
data

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

15SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Two Concepts in the Memory Space

• Private data: accessible only from a single thread

– Variable declared inside functions that live on the program stack are

normally private to prevent them from disappearing unexpectedly

• Shared data: data that is accessible from multiple threads

– Variables allocated dynamically in the program heap or statically at

global scope may have this property

– Some languages have both private and shared heaps or static

variables

• Local pointer or reference: refers to local data

– Local may be associated with a single thread or a shared memory

node

• Global pointer or reference: may refer to “remote” data

– Remote may mean the data is off-thread or off-node

– Global references are potentially remote; they may refer to local data

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

16SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Other Programming Models

• Message Passing Interface (MPI)

– Library with message passing routines

– Unforced locality control through separate address spaces

• OpenMP

– Language extensions with shared memory worksharing directives

– Allows shared data structures without locality control

OpenMP UPC CAF MPI

• UPC / CAF data accesses:

– Similar to OpenMP but with locality control

• UPC / CAF worksharing:

– Similar to MPI

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

17SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Understanding Runtime Behavior
- Berkeley UPC Compiler

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-

independent

Network-

independent

Language-

independent

Compiler-

independent

UPC Code UPC Compiler

Used by bupc and

gcc-upc

Used by Cray

UPC, CAF,

Chapel, Titanium,

and others
Runs on shared memory “without” GASNet, on cluster with it, and on

hybrids

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

18SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC Pointers

• In UPC pointers to shared objects have three fields:

– thread number

– local address of block

– phase (specifies position in the block) so that operations like

++ move through the array correctly

• Example implementation

Phase Thread Virtual Address

03738484963

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

19SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

One-Sided vs Two-Sided
Communication

• A one-sided put/get message can be handled directly by a

network interface with RDMA support

– Avoid interrupting the CPU or storing data from CPU (preposts)

• A two-sided messages needs to be matched with a receive to

identify memory address to put data

– Offloaded to Network Interface in networks like Quadrics

– Need to download match tables to interface (from host)

– Ordering requirements on messages can also hinder bandwidth

address

message id

data payload

data payload

one-sided put message

two-sided message

network

interface

memory

host

CPU

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

20SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

One-Sided vs. Two-Sided: Practice

0

100

200

300

400

500

600

700

800

900

10 100 1,000 10,000 100,000 1,000,000

Size (bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

GASNet put (nonblock)"

MPI Flood

Relative BW (GASNet/MPI)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

10 1000 100000 10000000

Size (bytes)

• InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5

• Half power point (N ½) differs by one order of magnitude

• This is not a criticism of the implementation!

Joint work with Paul Hargrove and Dan Bonachea

(u
p

 i
s
 g

o
o

d
)

NERSC Jacquard

machine with

Opteron processors

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

21SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

GASNet vs MPI Latency on BG/P

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

22SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

GASNet vs. MPI Bandwidth on BG/P

• GASNet outperforms MPI on small to medium messages, especially when
multiple links are used.

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

23SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

FFT Performance on BlueGene/P

HPC Challenge Peak as of July 09 is

~4.5 Tflops on 128k Cores

 PGAS implementations

consistently outperform MPI

 Leveraging

communication/computation

overlap yields best

performance

 More collectives in flight

and more communication

leads to better

performance

 At 32k cores, overlap

algorithms yield 17%

improvement in overall

application time

 Numbers are getting close to

HPC record

 Future work to try to beat

the record

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
F

lo
p

s

Num. of Cores

Slabs

Slabs (Collective)

Packed Slabs (Collective)

MPI Packed Slabs

G

O

O

D

G

O

O

D

G

O

O

D

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

24SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

FFT Performance on Cray XT4

• 1024 Cores of the Cray XT4

– Uses FFTW for local FFTs

– Larger the problem size the more effective the overlap

G

O

O

D

G

O

O

D

G

O

O

D

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

25SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC HPL Performance

• Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid

– ScaLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)

– UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s

• n = 32000 on a 4x4 process grid

– ScaLAPACK - 43.34 GFlop/s (block size = 64)

– UPC - 70.26 GFlop/s (block size = 200)

X1 Linpack Performance

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
F

lo
p

/s

MPI/HPL

UPC

Opteron Cluster

Linpack

Performance

0

50

100

150

200

Opt/64

G
F

lo
p

/s

MPI/HPL

UPC

Altix Linpack

Performance

0

20

40

60

80

100

120

140

160

Alt/32

G
F

lo
p

/s

MPI/HPL

UPC

•MPI HPL

numbers from

HPCC database

•Large scaling:
• 2.2 TFlops on 512p,

• 4.4 TFlops on 1024p

(Thunder)

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

26SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Support

• PGAS in general

– http://en.wikipedia.org/wiki/PGAS

– http://www.pgas-forum.org/ PGAS conferences

• UPC

– http://en.wikipedia.org/wiki/Unified_Parallel_C

– http://upc.gwu.edu/ Main UPC homepage

– https://upc-wiki.lbl.gov/UPC/ UPC wiki

– http://upc.gwu.edu/documentation.html Language specs

– http://upc.gwu.edu/download.html UPC compilers

• CAF

– http://en.wikipedia.org/wiki/Co-array_Fortran

– http://www.co-array.org/ Main CAF homepage

– Part of upcoming Fortran 2008

– http://www.g95.org/coarray.shtml g95 compiler

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

27SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC

• UPC Language Specification (V 1.2)

– The UPC Consortium, June 2005

– http://upc.gwu.edu/docs/upc_specs_1.2.pdf

• UPC Manual

– Sébastien Chauvin, Proshanta Saha, François Cantonnet, Smita

Annareddy, Tarek El-Ghazawi, May 2005

– http://upc.gwu.edu/downloads/Manual-1.2.pdf

• UPC Book

– Tarek El-Ghazawi, Bill Carlson, Thomas Sterling,

and Katherine Yelick, June 2005

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

28SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

CAF

• From http://www.nag.co.uk/SC22WG5/

• John Reid:
Co-arrays in the next Fortran Standard
ISO/IEC JTC1/SC22/WG5 N1824 (April 21, 2010)

– ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf

Older versions:

• Robert W. Numrich and John Reid:
Co-arrays in the next Fortran Standard
ACM Fortran Forum (2005), 24, 2, 2-24 and WG5 paper ISO/IEC
JTC1/SC22/WG5 N1642

– ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1642.pdf

• Robert W. Numrich and John Reid:
Co-Array Fortran for parallel programming.
ACM Fortran Forum (1998), 17, 2 (Special Report) and Rutherford Appleton
Laboratory report RAL-TR-1998-060 available as

– ftp://ftp.numerical.rl.ac.uk/pub/reports/nrRAL98060.pdf

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

29SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Programming styles with PGAS

• Data is partitioned among the processes, i.e., without halos

– Fine-grained access to the neighbor elements when needed

 Compiler has to implement automatically (and together)

 pre-fetches

 bulk data transfer (instead of single-word remote accesses)

 May be very slow if compiler‟s optimization fails

• Application implements halo storage

– Application organizes halo updates with bulk data transfer

 Advantage: High speed remote accesses

 Drawbacks: Additional memory accesses and storage needs

Partitioned Global Array

Local
access

Global
access

Local
data

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

30SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Coming from MPI –
what‟s different with PGAS?

Real :: A(n,m), B(n,m)

do j = 2, m-1

do i = 2, n-1

B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)

end do

end do

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)

Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)

m1 = (m+size-1)/size; ja=1+m1*myrank; je=max(m1*(myrank+1), m)

jax=ja-1; jex=je+1 // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)

do j = max(2,ja), min(m-1,je)

do i = 2, n-1

B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)

end do

end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors

Call MPI_Recv(.......) ! - receiving from the neighbors,

! storing into the halo cells

Loop over y-dimension

Vectorizable loop over x-dimension

Calculate B,

using upper and lower,

left and right value of A

Data definition

size = num_images()

myrank = this_image() – 1

! Local halo = remotely computed data

B(:,jex) = B(:,1)[myrank+1]

B(:,jax) = B(:,m1)[myrank–1]

! Trick in this program:

! Remote memory access instead of

! MPI send and receive library calls

ja=1; je= m1; ! Same values on all processes

jaloop, jeloop ! Orig.: 2, m-1

ja_loop=1; if(myrank==0) jaloop=2; jeloop=min((myrank+1)*m1,m–1) – myrank*m1;

in original

index range

remove range of

lower processes

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

31SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Irregular Applications

• The SPMD model is too restrictive for some “irregular”

applications

– The global address space handles irregular data accesses:

 Irregular in space (graphs, sparse matrices, AMR, etc.)

 Irregular in time (hash table lookup, etc.): for reads, UPC handles this

well; for writes you need atomic operations

– Irregular computational patterns:

 Not statically load balanced (even with graph partitioning, etc.)

 Some kind of dynamic load balancing needed with a task queue

• Design considerations for dynamic scheduling UPC

– For locality reasons, SPMD still appears to be best for regular

applications; aligns threads with memory hierarchy

– UPC serves as “abstract machine model” so dynamic load

balancing is an add-on

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

32SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

// allocate a distributed task queue

taskq_t * all_taskq_alloc();

// enqueue a task into the distributed queue

int taskq_put(upc_taskq_t *, upc_task_t*);

// dequeue a task from the local task queue

// returns null if task is not readily available

int taskq_get(upc_taskq_t *, upc_task_t *);

// test whether queue is globally empty

int taskq_isEmpty(bupc_taskq_t *);

// free distributed task queue memory

int taskq_free(shared bupc_taskq_t *);

Distributed Tasking API for UPC

s
h
a
re

d

p
ri
v
a
te

enqueue dequeue

internals are hidden from

user, except that dequeue

operations may fail and

provide hint to steal

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

33SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC Tasking on
Nehalem 8 core SMP

0

1

2

3

4

5

6

7

8

9

S
p

e
e

d
u

p
 N

o
rm

a
li
z
e

d
 t

o
 S

e
ri

a
l

E
x

e
c

.
T

im
e

UPC Tasking

OpenMP Tasking

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

34SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Multi-Core Cluster Performance

UTS (T1XL)FIB (48) NQueen (15x15)

39.5 40.1 43.1 43.0

58.7 59.5
66.5

71.4

82.9 84.1

113.6 116.9

80.3

96.1

152.7
161.7

128.2

172.8

Speedup 16.5 % 5.6% 25.9%

0

20

40

60

80

100

120

140

160

180

200

RANDOM LOCALITY RANDOM LOCALITY RANDOM LOCALITY

S
p

e
e

d
u

p
 r

e
la

ti
v
e

 t
o

 S
e

ri
a

l
E

x
e

c
.

T
im

e

64 (8 nodes) 128 (16 nodes) 256 (32 nodes)

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

35SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Hierarchical PGAS Model

• A global address space for hierarchical machines may have multiple

kinds of pointers

• These can be encoded by programmers in type system or hidden,

e.g., all global or only local/global

• This partitioning is about pointer span, not privacy control

(although one may want to align with parallelism)

B

span 1
(core local)

span 2
(chip local)

level 3
(node local)

level 4
(global world)

C
D

A
1

2
34

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

36SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Hybrid Partitioned Global Address
Space

Segment

Local

Segment

on Host

Memory

Processor 1

Segment

Shared

Segment

on Host

Memory

Segment

Local

Segment

on GPU

Memory

Segment

Local

Segment

on Host

Memory

Processor 2

Segment

Local

Segment

on GPU

Memory

Segment

Local

Segment

on Host

Memory

Processor 3

Segment

Local

Segment

on GPU

Memory

Segment

Local

Segment

on Host

Memory

Processor 4

Segment

Local

Segment

on GPU

Memory

 Each thread has only two shared segments, which can be

either in host memory or in GPU memory, but not both.

 Decouple the memory model from execution models;

therefore it supports various execution models.

 Caveat: type system and therefore interfaces blow up with

different parts of address space

Segment

Shared

Segment

on GPU

Memory

Segment

Shared

Segment

on Host

Memory

Segment

Shared

Segment

on GPU

Memory

Segment

Shared

Segment

on Host

Memory

Segment

Shared

Segment

on GPU

Memory

Segment

Shared

Segment

on Host

Memory

Segment

Shared

Segment

on GPU

Memory

 Basic PGAS concepts
• Trends

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Applications and Hybrid

Programming

37SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

GASNet GPU Extension Performance

Latency Bandwidth

G

o

o

d

G

o

o

d

G

o

o

d

G

o

o

d

38SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Compilation and Execution

• On Cray XT4, franklin.nersc.gov (at NERSC), with PGI compiler

– UPC only

– Initialization: module load bupc

– Compile:

 UPC: upcc –O –pthreads=4 -o myprog myprog.c

– Execute (interactive test on 8 nodes with each 4 cores):
 qsub -I –q debug -lmppwidth=32,mppnppn=4,walltime=00:30:00 -V

 upcrun -n 32 –cpus-per-node 4 ./myprog

 Please use “debug” only with batch jobs, not interactively!

– For the tutorial, we have a special queue: -q special
 qsub -I –q special -lmppwidth=4,mppnppn=4,walltime=00:30:00 -V

 upcrun -n 4 –cpus-per-node 4 ./myprog

 Limit: 30 users x 1 node/user

 Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Hybrid Programming

see also

UPC-pgi

39SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Compilation and Execution

• On Cray XT4, franklin.nersc.gov (at NERSC), with Cray compilers

– Initialization: module switch PrgEnv-pgi PrgEnv-cray

– Compile:

 UPC: cc -h upc -o myprog myprog.c

 CAF: crayftn –h caf -o myprog myprog.f90

– Execute (interactive test on 8 nodes with each 4 cores):
 qsub -I –q debug -lmppwidth=32,mppnppn=4,walltime=00:30:00 -V

 aprun -n 32 -N 4 ./myprog (all 4 cores per node are used)

 aprun -n 16 -N 2 ./myprog (only 2 cores per node are used)

 Please use “debug” only with batch jobs, not interactively!

– For the tutorial, we have a special queue: -q special
 qsub -I –q special -lmppwidth=4,mppnppn=4,walltime=00:30:00 -V

 aprun -n 4 –N 4 ./myprog

 Limit: 30 users x 1 node/user

 Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Hybrid Programming

see also

Cray UPC

see also

Cray Fortran

40SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

First exercise

• Purpose:

– get acquainted with use of

compiler and run time

environment

– use basic intrinsics

– first attempt at data transfer

• Copy skeleton program to

your working directory:
– cp ../skel/hello_serial.f90 hello_caf.f90

– cp ../skel/hello_serial.c hello_upc.c

• Add statements

– UPC: also include file

to enable running on multiple

images

– only one task should write „hello

world“

• Add the following declarations

and statements:

– and observe what happens if run

repeatedly with more than one

image/thread

 Basic PGAS concepts
• Exercises

• UPC and CAF basic syntax
• Advanced synchronization

concepts
• Hybrid Programming

hello

integer :: x[*] = 0

:

x = this_image()

if (this_image() > 1) then

write(*, *) „x from 1 is „,x[1]

end if

Fortran

shared [] int x[THREADS];

:

x[MYTHREAD] = 1 + MYTHREAD;

if (MYTHREAD > 0) {

printf(“x from 0 is %i\n“,

x[0]);

}

C

incorrect. why?

incorrect. why?

41SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC and CAF Basic Syntax

• Basic PGAS concepts
 UPC and CAF basic syntax
• Advanced synchronization

concepts
• Hybrid Programming

o Declaration of shared data / coarrays

o Intrinsic procedures for handling shared data
 elementary work sharing

o Synchronization:
- motivation – race conditions;

- rules for access to shared entities by different threads/images

o Dynamic entities and their management:
- UPC pointers and allocation calls

- CAF allocatable entities and dynamic type components

- Object-based and object-oriented aspects

Hands-on: Exercises on basic syntax and dynamic data

42SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Partitioned Global Address Space:
Distributed variable

• Declaration:

– UPC: shared float x[THREADS]; // statically allocated outside of functions

– CAF: real :: x[0:*]

• Data distribution:

x[0] x[1] x[2] x[3] x[4] x[5]

UPC: “Parallel dimension”

CAF: “Codimension”

Process 0 Process 1 Process 2 Process 3 Process 4 Process 5

• Basic PGAS concepts
 UPC and CAF basic syntax

• Shared entities
• Advanced synchronization

concepts
• Hybrid Programming

43SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Partitioned Global Address Space:
Distributed array

• Declaration:

– UPC: shared float x[3][THREADS]; // statically allocated outside of functions

– CAF: real :: x(0:2)[0:*]

• Data distribution:

x(0)[0]

x(1)[0]

x(2)[0]

UPC: “Parallel dimension”

CAF: “Codimension”

x(0)[1]

x(1)[1]

x(2)[1]

x(0)[2]

x(1)[2]

x(2)[2]

x(0)[3]

x(1)[3]

x(2)[3]

x(0)[4]

x(1)[4]

x(2)[4]

x(0)[5]

x(1)[5]

x(2)[5]

Process 0 Process 1 Process 2 Process 3 Process 4 Process 5

[2] in UPC(2) in CAF

• Basic PGAS concepts
 UPC and CAF basic syntax

• Shared entities
• Advanced synchronization

concepts
• Hybrid Programming

44SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Distributed arrays with UPC

• UPC shared objects must be statically allocated

• Definition of shared data:

– shared [blocksize] type variable_name;

– shared [blocksize] type array_name[dim1];

– shared [blocksize] type array_name[dim1][dim2];

– …

• Default: blocksize=1

• The distribution is always round robin with chunks of blocksize elements

• Blocked distribution is implied if last dimension==THREADS and blocksize==1

the dimensions

define which

elements exist

See next slides

• Basic PGAS concepts
 UPC and CAF basic syntax

• Shared entities
• Advanced synchronization

concepts
• Hybrid Programming

45SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC shared data – examples

a[0]

a[4]

a[8]

a[12]

a[16]

a[1]

a[5]

a[9]

a[13]

a[17]

a[2]

a[6]

a[10]

a[14]

a[18]

a[3]

a[7]

a[11]

a[15]

a[19]

Thread 0 Thread 1 Thread 2 Thread 3

shared [1] float a[20]; // or

shared float a[20];

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[16]

a[17]

a[18]

a[19]

Thread 0 Thread 1 Thread 2 Thread 3

shared [5] float a[20]; // or

define N 20

shared [N/THREADS] float a[N];

a[0][0]

a[1][0]

a[2][0]

a[3][0]

a[4][0]

Thread 0 Thread 1 Thread 2 Thread 3

shared [1] float a[5][THREADS];

// or

shared float a[5][THREADS];

a[0][1]

a[1][1]

a[2][1]

a[3][1]

a[4][1]

a[0][2]

a[1][2]

a[2][2]

a[3][2]

a[4][2]

a[0][3]

a[1][3]

a[2][3]

a[3][3]

a[4][3]

a[0][0]

a[0][1]

a[0][2]

a[0][3]

a[0][4]

Thread 0 Thread 1 Thread 2 Thread 3

shared [5] float a[THREADS][5];

identical at compile timeTHREADS=1st dim!

a[1][0]

a[1][1]

a[1][2]

a[1][3]

a[1][4]

a[2][0]

a[2][1]

a[2][2]

a[2][3]

a[2][4]

a[3][0]

a[3][1]

a[3][2]

a[3][3]

a[3][4]

Courtesy of Andrew Johnson

• Basic PGAS concepts
 UPC and CAF basic syntax

• Shared entities
• Advanced synchronization

concepts
• Hybrid Programming

46SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC shared data –
examples (continued)

a[0] a[1] a[2] a[3]

Thread 0 Thread 1 Thread 2 Thread 3

shared float a[THREADS]; // or

shared [1] float a[THREADS];

a[0]

a[1]

a[8]

a[9]

a[16]

a[17]

a[2]

a[3]

a[10]

a[11]

a[18]

a[19]

a[4]

a[5]

a[12]

a[13]

a[6]

a[7]

a[14]

a[15]

Thread 0 Thread 1 Thread 2 Thread 3

shared [2] float a[20];

a

Thread 0 Thread 1 Thread 2 Thread 3

shared float a;

// located only in thread 0

a[0]

a[1]

a[2]

…

a[9]

Thread 0 Thread 1 Thread 2 Thread 3

shared [] float a[10];

Blank blocksize located only in thread 0
upc_threadof(&a[15]) == 3

Courtesy of Andrew Johnson

• Basic PGAS concepts
 UPC and CAF basic syntax

• Shared entities
• Advanced synchronization

concepts
• Hybrid Programming

47SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Integration of the type system
(static type components)

• CAF:

– compare this with effort needed

to implement the same with MPI (dispense with all of MPI_TYPE_* API)

– what about dynamic type components? later in this talk

• UPC:

type :: body

real :: mass

real :: coor(3)

real :: velocity(3)

end type

type(body) :: asteroids(100)[*]

type(body) :: s

:

if (this_image() == 2) &

s = asteroids(5)[1]

typedef struct {

float mass;

float coor[3];

float velocity[3];

} Body;

declare and use entities of this type (symmetric variant):

shared [*] \

Body asteroids[THREADS][100];

Body s;

:

if (MYTHREAD == 1) {

s = asteroids[0][4];

}

enforced

storage

order

components

„lifted“ to

shared area

• Basic PGAS concepts
 UPC and CAF basic syntax

• Shared entities
• Advanced synchronization

concepts
• Hybrid Programming

48SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Local access to local part
of distributed variables

• UPC:

• CAF: (0-based ranks) (1-based ranks)

shared float x[THREADS];

float *x_local;

x_local = (float *) &x[MYTHREAD];

*x now equals x[MYTHREAD]

real :: x[0:*]

numprocs=num_images()

myrank =this_image()–1

x now equals x[myrank]

real :: x[*]

numprocs=num_images()

myrank =this_image()

x now equals x[myrank]

• Basic PGAS concepts
 UPC and CAF basic syntax

• Shared entities
• Advanced synchronization

concepts
• Hybrid Programming

49SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

CAF-only: Multidimensional
coindexing

• Coarrays may have a corank larger than 1

• Each variable may use a different coindex range

integer :: numprocs, myrank, coord1, coord2, coords(2)

real :: x[0:*]

real :: y[0:1,0:*] ! high value of last coord must be *

numprocs = num_images()

myrank = this_image(x,1) ! x is 0-based

coord1 = this_image(y,1)

coord2 = this_image(y,2)

coords = this_image(y) ! coords-array!

x now equals x[myrank]

y now equals y[coord1,coord2]

and y[coords(1),coords(2)]

• Basic PGAS concepts
 UPC and CAF basic syntax

• Shared entities
• Advanced synchronization

concepts
• Hybrid Programming

50SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Remote access intrinsic support

• CAF: Inverse to this_image(): the image_index() intrinsic

– delivers the image corresponding to a coindex tuple

– provides necessary information e.g., for future synchronization

statements (to be discussed)

• UPC: upc_threadof() provides analogous information

• Basic PGAS concepts
 UPC and CAF basic syntax

• Shared entities
• Advanced synchronization

concepts
• Hybrid Programming

integer :: remote_image

real :: y[0:1,0:*] ! high value of last coord must be *

remote_image = image_index(y, (/ 3, 2 /))

image on which y[3, 2] resides;

zero if coindex tuple is invalid

51SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Work sharing (1)

• Loop execution
– simplest case: all data are

generated locally

– chunking variants
(me=this_image())

• CAF data distribution
– in contrast to UPC, data model

is fragmented

– trade-off: performance vs.

programming complexity

– blocked distribution:

(block size: depends on number of

images; number of actually used

elements may vary between

images)

– alternatives: cyclic, block-cyclic

do i=1, n

: ! do work

end do

do i=me,n,num_images()

: ! do work

end do

: ! calculate chunk

do i=(me-1)*chunk+1,min(n,me*chunk)

: ! do work

end do

a1,…,aN

numeric model: array of size N

a1,…,ab ab+1,…,a2b …,aN

• Basic PGAS concepts
 UPC and CAF basic syntax

• Shared entities
• Advanced synchronization

concepts
• Hybrid Programming

52SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Work sharing (2)
data distribution + avoiding non-local accesses

• CAF:
– index transformations between

local and global

• UPC: global data model
– loop over all, work on subset

– conditional may be inefficient

– cyclic distribution may be slow

• UPC: upc_forall

– integrates affinity with loop

construct

– affinity expression:

an integer execute if
i%THREADS == MYTHREAD

a global address execute if
upc_threadof(…) == MYTHREAD

continue or empty all

threads (use for nested upc_forall)

– example above: could replace „i“

with „&a[i]“

integer :: a(ndim)[*]

do i=1, nlocal

j = … ! global index

a(i) = …

end do

shared int a[N];

for (i=0; i<N; i++) {

if (i%THREADS == MYTHREAD) {

a[i] = … ;

}

}

shared int a[N];

upc_forall (i=0; i<N; i++; i) {

a[i] = … ;

} affinity expression

may vary
between images

• Basic PGAS concepts
 UPC and CAF basic syntax

• Shared entities
• Advanced synchronization

concepts
• Hybrid Programming

53SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Typical collective execution
with access epochs

UPC: *x_local = 17.0;

CAF: x = 17.0

Barrier synchronization

UPC: printf(… , x[1])

CAF: print *, x[1]

Barrier synchronization

UPC: x[0] = 29.0;

CAF: x[0] = 29.0

…

Process 0

UPC: *x_local = 33.0;

CAF: x = 33.0

Barrier synchronization

UPC: printf(… , x[0])

CAF: print *, x[0]

Barrier synchronization

UPC: x[1] = 78.0;

CAF: x[1] = 78.0

…

Process 1

Local accesses on

shared data

Barrier until all

processes have finished

their local accesses

Remote accesses

Barrier until all

processes have finished

their remote accesses

Local accesses

Both notations

are equivalent

• Basic PGAS concepts
 UPC and CAF basic syntax
• Advanced synchronization

concepts
• Hybrid Programming

(CAF: segments)

54SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Collective execution –
same with remote write / local read

UPC: x[1] = 33.0;

CAF: x[1] = 33.0

Barrier synchronization

UPC: printf(…, *x_local)

CAF: print *, x

Barrier synchronization

UPC: x[1] = 78.0;

CAF: x[1] = 78.0

…

Process 0

UPC: x[0] = 17.0;

CAF: x[0] = 17.0

Barrier synchronization

UPC: printf(…, *x_local)

CAF: print *, x

Barrier synchronization

UPC: x[0] = 29.0;

CAF: x[0] = 29.0

…

Process 1

Remote accesses on

shared data

Barrier until all

processes have finished

their remote accesses

Local accesses

Barrier until all

processes have finished

their local accesses

Remote accesses

• Basic PGAS concepts
 UPC and CAF basic syntax
• Advanced synchronization

concepts
• Hybrid Programming

55SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Synchronization

• Between a write access and a (subsequent or preceding) read or write

access of the same data from different processes,

a synchronization of the processes must be done!

• Most simple synchronization:

 barrier between all processes

• UPC:

• CAF:

Accesses to distributed data by some/all processes

upc_barrier;

Accesses to distributed data by some/all processes

Accesses to distributed data by some/all processes

sync all

Accesses to distributed data by some/all processes

Otherwise

race condition!

• Basic PGAS concepts
 UPC and CAF basic syntax
• Advanced synchronization

concepts
• Hybrid Programming

56SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Examples

• UPC:

• CAF:

shared float x[THREADS];

x[MYTHREAD] = 1000.0 + MYTHREAD;

upc_barrier;

printf(“myrank=%d, x[neighbor=%d]=%f\n”,

myrank, (MYTHREAD+1)%THREADS,

x[(MYTHREAD+1)%THREADS]);

real :: x[0:*]

integer :: myrank, numprocs

numprocs=num_images(); myrank =this_image()–1

x = 1000.0 + myrank

sync all

print *, „myrank=„, myrank,

„x[neighbor=„, mod(myrank+1,numprocs),

„]=„, x[mod(myrank+1,numprocs)]

write

sync

read

write

sync

read

• Basic PGAS concepts
 UPC and CAF basic syntax
• Advanced synchronization

concepts
• Hybrid Programming

57SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC and CAF Basic Syntax

• Basic PGAS concepts
 UPC and CAF basic syntax

• Shared entities
• Advanced synchronization

concepts
• Hybrid Programming

o Declaration of shared data / coarrays

o Intrinsic procedures for handling shared data
 elementary work sharing

o Synchronization:
- motivation – race conditions;

- rules for access to shared entities by different threads/images

o Dynamic entities and their management:
- UPC pointers and allocation calls

- CAF allocatable entities and dynamic type components

- Object-based and object-oriented aspects

Hands-on: Exercises on basic syntax and dynamic data

58SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Dynamic allocation with CAF

• Coarrays may be allocatable:

– synchronization across all images is then implied at completion of the

ALLOCATE statement (as well as at the start of DEALLOCATE)

• Same shape on all processes is required!

• Coarrays with POINTER attribute are not supported

– this may change in the future

real,allocatable :: a(:,:)[:] ! Example: Two-dim. + one codim.

allocate(a(0:m,o:n)[0:*]) ! Same m,n on all processes

real,allocatable :: a(:)[:] ! INCORRECT example

allocate(a(myrank:myrank+1)[0:*]) ! NOT supported

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

real,pointer :: ptr[*] ! NOT supported: pointer coarray

deferred shape/coshape

59SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Dynamic entities: Pointers

• Remember pointer semantics

– different between C and Fortran

• Pointers and PGAS memory categorization

– both pointer entity and pointee might be private or shared

 4 combinations theoretically possible

– UPC: three of these combinations are realized

– CAF: only two of the combinations allowed, and only in a limited manner

 aliasing is allowed only to local entities

<type> , [dimension (:[,:,…])], pointer :: ptr

ptr => var ! ptr is an alias for target var

<type> *ptr;

ptr = &var; ! ptr holds address of var

no pointer arithmetic

type and rank matching

pointer arithmetic

rank irrelevant

pointer-to-pointer

pointer-to-void / recast

F
o
rt

ra
n

C

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

60SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

• UPC:

– pointer to shared: addressing

overhead

• CAF:

– entity „o“: typically asymmetric

Pointers continued …

o[1]%p2 i1[3] i1[4]

i2 i2 ix p1

integer, target :: i1[*]

integer, pointer :: p1

type :: ctr

integer, pointer :: p2(:)

end type

type(ctr) :: o[*]

integer, target :: i2(3)

ix=o[1]%p2

a coarray cannot have the
pointer attribute

int *p1;

shared int *p2;

shared int *shared p3;

int *shared pdep;

int a[N];

shared int b[N];

p3

pdep

p1 a[0] p2 p2 a [0]

problem:

where does

pdep point?

all other threads

may not reference

(alias+coindexing) vs. address

p1 => i1

p2 = &b[1];b[1]
pdep

ref./def.

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

61SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Pointer to local portions
of shared data

• Cast a shared entity to a local pointer

• May have performance advantages

shared float a[5][THREADS];

float *a_local;

a_local = (float *) &a[0][MYTHREAD];

a_local[0] is identical with a[0][MYTHREAD]

a_local[1] is identical with a[1][MYTHREAD]

…

a_local[4] is identical with a[4][MYTHREAD]

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

address must have affinity

to local thread

pointer arithmetic

selects local part

62SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC: Shared Pointer
blocking and casting

• Assume 4 threads:

• Block size:

– is a property of the shared entity used

– can cast between different block sizes

 pointer arithmetic follows blocking

(„phase“) of pointer!

shared [2] int A[10];

shared int *p1;

shared [2] int *p2;

A[0]

A[1]

A[8]

A[9]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

Thread 0 1 2 3
if (MYTHREAD == 1) {

p1 = &A[0]; p2 = &A[0];

p1 += 4; p2 += 4;

}

p1 p2

after pointer increment

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

63SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC dynamic Memory Allocation

• upc_all_alloc

– Collective over all threads (i.e., all threads must call)

– All threads get a copy of the same pointer to shared memory

– Similar result as with static allocation at compile time:

shared void *upc_all_alloc(size_t nblocks, size_t nbytes)

Shared data allocated by upc_all_alloc

Global
access

shared [nbytes] char[nblocks*nbytes];

Run time arguments

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

64SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC dynamic Memory Allocation (2)

• upc_global_alloc

– Only the calling thread gets a pointer to shared memory

– Block size nbytes other than 1 is currently not supported

(in Berkeley UPC)

shared void *upc_global_alloc(size_t nblocks, size_t nbytes)

Shared data allocated by upc_all_alloc

Global
access

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

65SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC dynamic Memory Allocation (3)

• upc_alloc

– Allocates memory in the local thread that is accessible by all threads

– Only on calling processes

– Similar result as with static allocation at compile time:

shared void *upc_alloc(size_t nbytes)

Global
access

shared [] char[nbytes]; // but with affinity to the calling thread

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

66SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC example
with dynamic allocation

shared [] float * shared p4[THREADS]; // shared pointer array

// to shared data

float *p1; // private pointer to private portion

int main(int argc, char **argv)

{ int i, n, rank;

n = atoi(argv[1])

p4[MYTHREAD] = (shared [] float *) upc_alloc(n * sizeof(float));

p1 = (float *) p4[MYTHREAD];

for (i=0; i<n; i++) {

p1[i] = …

}

upc_barrier;

if (MYTHREAD == 0) {

for (rank=0; rank<THREADS; rank++)

for (i=0; i<n; i++) {

printf(……, p4[rank][i]);

}

}

}

}

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

67SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC example
with shared pointers

shared [] float * shared p4[THREADS]; // shared pointer array

// to shared data

float *p1; // private pointer to private portion hared

shared [] float *p2_neighbor; // private pointer to shared data

int main(int argc, char **argv)

{ int i, n, rank, next;

n = atoi(argv[1])

p4[MYTHREAD] = (shared [] float *) upc_alloc(n * sizeof(float));

p1 = (float *) p4[MYTHREAD];

upc_barrier;

next = MYTHREAD+1 % THREADS;

p2_neighbor = p4[next];

for (i=0; i<n; i++) {

x[i] = …

}

upc_barrier;

for (i=0; i<n; i++) {

printf(……, p2_neighbor[i]);

}

}

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

68SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Integration of the type system
CAF dynamic components

• Derived type component

– with POINTER attribute, or

– with ALLOCATABLE attribute

(don„t care a lot about the

differences for this discussion)

• Definition/references

– avoid any scenario which

requires remote allocation

• Step-by-step:
1. local (non-synchronizing) allo-

cation/association of component

2. synchronize

3. define / reference on remote

image

go to image p, look at descriptor,

transfer (private) data

o[1]%p2 o[2]%p2 o[3]%p2 o[4]%p2

X
type(ctr) :: o[*]

:

if (this_image() == p) &

allocate(o%p2(sz))

sync all

if (this_image() == q) &

o[p]%p2 = <array of size sz>

end if
sz same on each image?

or
o%p2 => var

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

remember earlier

type definition

Author:

R. Bader

69SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Integration of the type system
UPC pointer components

• Type definition

– avoid undefined results when

transferring data between

threads

• Similar step-by-step:

– local (per-thread) allocation

into shared space

– program semantics the same

as the CAF example on the

previous slide

typedef struct {

shared int *p2;

} Ctr;

dynamically allo-

cated entity should

be in shared

memory area

shared [1] Ctr o[THREADS];

int main() {

if (MYTHREAD == p) {

o[MYTHREAD].d = (shared int *) \

upc_alloc(SZ*sizeof(int));

}

upc_barrier;

if (MYTHREAD == q) {

for (i=0; i<SZ; i++) {

o[p].d[i] = … ;

}

}

}

o[0].p2 o[1].p2 o[2].p2 o[3].p2

X

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

70SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Fortran Object Model (1)

• Type extension

– single inheritance (tree a DAG)

• Polymorphic entities

– new kind of dynamic storage

– change not only size, but also

(dynamic) type of object during

execution of program

type :: body

real :: mass

: ! position, velocity

end type

type, extends(body) :: &

charged_body

real :: charge

end type

type(charged_body) :: &

proton

proton%mass = …

proton%charge = …

inherited

class(body), &

allocatable :: balloon

allocate(body :: balloon)

: ! send balloon on trip

if (hit_by_lightning()) then

: ! save balloon data

deallocate(balloon)

allocate(&

charged_body :: balloon)

balloon = …

! balloon data + charge

end if

: ! continue trip if possible

typed allocation

body

charged_body

etc_body

must be an extension

declared type

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

71SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Fortran Object Model (2)

• Associate procedures with type

– polymorphic dummy argument

required for inheritance

– TBP can be overridden by extension
(must specify essentially same interface,

down to keywords)

• Run time type/class resolution

– make components of dynamic type

accessible

– at most one block is executed

– use sparingly

– same mechanism is used (internally)

to resolve type-bound procedure

calls

type :: body

: ! data components

procedure(p), pointer :: print

contains

procedure :: dp

end type

subroutine dp(this, kick)

class(body), intent(inout) :: this

real, intent(in) :: kick(3)

: ! give body a kick

end subroutine

object-bound

procedure (pointer)

type-bound

procedure (TBP)

balloon%print => p_formatted

call balloon%print()

call balloon%dp(mykick) balloon

matches this

select type (balloon)

type is (body)

: ! balloon non-polymorphic here

class is (rotating_body)

: ! declared type lifted

class default

: ! implementation incomplete?

end select

polymorphic
entity

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

72SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Object orientation and Parallelism (1)

• Run time resolution

– allocation must guarantee

same dynamic type on each

image

• Using procedures

– procedure pointers may point

to a different target on each

image

– type-bound procedure is

guaranteed to be the same

call asteroids%dp(kick) ! Fine

call asteroids%print() ! Fine

if (this_image() == 1) then

select type(asteroids)

type is (rotating_body)

call asteroids[2]%print() ! NO

call asteroids[2]%dp(kick) ! OK

end select

end if

class(body), &

allocatable :: asteroids[:]

allocate(rotating_body :: &

asteroids[*])

! synchronizes

if (this_image == 1) then

select type(asteroids)

type is (rotating body)

asteroids[2] = …

end select

end if

required for
coindexed access

non-polymorphic

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

73SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Object orientation and Parallelism (2)

• Coarray type components

• Usage:

– entity must be:

(1) non-allocatable, non-pointer

(2) a scalar

(3) not a coarray (because

par_vec%a already is)

• Type extension

– defining a coarray type component

in an extension is allowed, but

parent type also must have a

coarray component

• Restrictions on assignment

– intrinsic assignment to polymorphic

coarrays (or coindexed entities) is

prohibited

type parallel_stuff

real, allocatable :: a(:)[:]

integer :: i

end type
must be

allocatable

type(parallel_stuff) :: par_vec

allocate(par_vec%a(n)[*])

symmetric

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

74SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Major Differences
between UPC and CAF

• CAF

– declaration of shared entity requires additional codimension

(“fragmented data view”).

– Codimensions are very flexible (multi-dimensional).

• UPC

– No codimensions (“global data view”).

– PGAS-arrays are distributed and the array indices are mapped to

threads.

– Block-wise distribution hard to handle

 Last index x[……][THREADS] implies round robin distribution

 possibility of asymmetric distribution

– Multiple variants of dynamic allocation

• Basic PGAS concepts
 UPC and CAF basic syntax

• Dynamic
• Advanced synchronization

concepts
• Hybrid Programming

75SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Second Exercise:
Handling a triangular matrix (1)

• Consider a triangular matrix

– suggested data structure

• Procedure:

– make copy of

../skel/triangle_serial.f90 or

../skel/triangle_serial.c to your

working directory

– the program reads in matrix size

and a row index, it then sets up

A(i,j) = i+j and prints out the

specified row

– parallelize this program in a

manner that distributes data

evenly across tasks

– note that accesses to A can be

kept purely local for this problem

(which remote accesses will be

needed?)

• Basic PGAS concepts
 UPC and CAF basic syntax

• Exercises
• Advanced synchronization

concepts
• Hybrid Programming

A(i,j) i=1..n, j=1..n-i+1

type :: tri_matrix

real, allocatable :: row(:)

end type

typedef struct {

float *row;

size_t row_len;

} Tri_matrix;

Fortran

C

typically n >> number of tasks
i

j

triangular

Author:

R. Bader

76SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Handling a triangular matrix (2)

• Example program run:

– executed with three images

• Suggestions:

– observe how location of row

changes with number of

image and row index

– add the element count output

as illustrated to the left

• Basic PGAS concepts
 UPC and CAF basic syntax

• Exercises
• Advanced synchronization

concepts
• Hybrid Programming

aprun –n 3 ./triang.exe

23 20

Row 20 on image 2:

21.0

22.0

23.0

24.0

Number of elements on image 2: 92

Number of elements on image 1: 100

Number of elements on image 3: 84

stdin

Author:

R. Bader

77SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Advanced Synchronization
Concepts

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html

o Partial synchronization

 mutual exclusion

 memory fences and atomic subroutines

 split-phase barrier

o Collective operations

o Some parallel patterns and hints on library design:

- parallelization concepts with and without halo cells

- work sharing; distributed structures

- procedure interfaces

o Hands-on session

78SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Each grey box:

represents one
sync images

statement

Partial synchronization

• Image subsets

– sometimes, it is sufficient to

synchronize only a few

images

– CAF supports this:

executing image implicitly

included in image set

– UPC does not explicitly support

this; note that in

exp only serves as a label, with

the same value on each thread

• More than 2 images:

– need not have same image

set on each image

– but: eventually all image

pairs must be resolved, else

deadlock occursif (this_image() < 3) then

sync images ((/ 1, 2 /))
end if

execution sequence

upc_barrier exp;

(/ 2 /) (/ 3 /)

(/ 3 /) (/ 1 /)

(/ 1 /) (/ 2 /)

1

2

3

1

2

3

4

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

79SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Example: Simple Master-Worker

• Scenario:

– one image sets up data for

computations

– others do computations

– difference between
SYNC IMAGES (*) and

SYNC ALL: no need to

execute from all images

• Performance notes:

– sending of data by image 1

– „push“ mode a high

quality implementation may

implement non-blocking

transfers

– defer synchronization to

image control statement

if (this_image() == 1) then

: ! send data

sync images (*)
else

sync images (1)

: ! use data

end if
images 2 etc.

don„t mind

stragglers

do i=2, num_images()

a(:)[i] = …

end do

„all images“

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

80SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Partial synchronization:
Best Practices

• Localize complete set of synchronization statements

– avoid interleaved subroutine calls which do synchronization of their

own

– a very bad idea if subprogram does the following

– may produce wrong results even if no deadlock occurs

if (this_image() == 1) sync images (/ 2 /)

call mysub(…)

:

if (this_image() == 2) sync images (/ 1 /)

subroutine mysub(…)

:

if (this_image() == 2) sync images (/ 1 /)

:

end subroutine

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

81SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Mutual Exclusion (simplest case)

• Critical region

– In CAF only

– block of code only executed

by one image at a time

– in arbitrary order

– can have a name, but has no

semantics associated with it

• Subsequently executing

images:

– segments corresponding to

the code block ordered

against one another

– this does not apply to

preceding or subsequent

code blocks

 may need additional

synchronization to protect

against race conditions

• UPC:

 use locks (see later)

execution sequence

critical

: ! statements in region

end critical

e.g., update X[1]1

2

3

4

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

82SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Memory fence

• Target: allow implementation of user-defined synchronization

• Prerequisite: subdivide a segment into two segments

• Assurance given by memory fence:

– operations on x[Q] and y[Q] via statements on P

– action on x[Q] precedes action on y[Q] code movement by compiler
prohibited

– P is subdivided into two segments / access epochs

– but: segment on Q is unordered with respect to both segments on P

image / thread P

image / thread Q

memory fence

CAF:
sync memory

UPC: „null strict access“
upc_fence;

x[Q] y[Q] Note:

A memory fence is

implied by most

other synchroni-

zation statements

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

83SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Atomic subroutines and atomic types

• CAF:

– ATOM: is a scalar coarray or co-

indexed object of type
logical(atomic_logical_kind)

or

integer(atomic_int_kind)

– VALUE: is of same type as ATOM

• Berkeley UPC extension:

– shared int64_t *ptr;

– int64_t value;

– unsigned and 32 bit integer types

also available

– „_R“ indicates relaxed memory

model

– „_S“ (strict) model also available

Remember synchronization rule for relaxed memory model:
A shared entity may not be modified and read from two different threads/images

in unordered access epochs/segments

Atomic subroutines allow a limited exception to this rule

call ATOMIC_DEFINE(ATOM, VALUE)

call ATOMIC_REF(VALUE, ATOM)

Semantics:
• ATOM/ptr always has a well-defined value if only the above subroutines are used

• for multiple updates (=definitions) on the same ATOM, no assurance is given about the

order which is observed for references programmers„ responsibility

bupc_atomicI64_set_R(ptr, value);

value = bupc_atomicI64_read_R(ptr);

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

84SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Example: Producer/Consumer

• CAF:

– memory fence: prevents reordering

of statements (A), enforces memory

loads (for coarrays, B)

– atomic calls: ensure that B is exe-

cuted after A

• BUPC:

• further atomic functions:
– swap, compare-and-swap, fetch-and-

add, fetch-and-<logical-operation>

– also suggested for CAF TR

logical(ATOMIC_LOGICAL_KIND), save :: &

ready[*] = .false.

logical :: val

me = THIS_IMAGE()

if (me == p) then

: ! produce

sync memory ! A

call ATOMIC_DEFINE(ready[q], .true.)

else if (me == q)

val = .false.

do while (.not. val)

call ATOMIC_REF(val, ready)

end do

sync memory ! B

: ! consume

end if

segment Pi ends

segment Qj starts

shared [] int32_t ready = 0;

int32_t val;

me = MYTHREAD;

if (me == p) {

: // produce

upc_fence; ! A

bupc_atomicI32_set_R(&ready, 1);

} else if (me == q) {

val = 0;

while (! val) {

val = bupc_atomicI32_read_R(&ready);

}

upc_fence; ! B

: // consume

}

roll-your-own

partial synchronization

sync images ((/ p, q /))

would do the job as well

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

85SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Recommendation

• Functionality from the last three slides

– should be used only in exceptional situations

– can be easily used in an unportable way (works on one system, fails

on another) beware

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

86SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Locks – a mechanism for
mutual exclusion

• Coordinate access to shared (= sensitive) data

– sensitive data represented as “red balls”

• Use a coarray/shared lock variable

– modifications are guaranteed to be atomic

– consistency across images/threads

• Problems with CAF critical region:

– lack of scalability if multiple entities are protected

– updates to same entity in different parts of program

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

87SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Simplest examples for usage
of locks

• CAF:

– coarray lock variable

– as many locks as there are

images, but typically only one is

used

– lock/unlock: no memory fence,

only one-way segment ordering

• UPC:

– single pointer lock variable

– thread-individual lock generation is

also possible (non-collective)

– lock/unlock imply memory fence

use, intrinsic :: iso_fortran_env

type(lock_type) :: lock[*]

! default initialized to unlocked

logical :: got_it

lock(lock[1])

: ! play with red balls

unlock(lock[1])

do

lock(lock[2], acquired_lock=got_it)

if (got_it) exit

: ! do stuff unrelated to any red balls

end do

: ! play with other red balls

unlock(lock[2])

like critical, but

more flexible

#include <upc.h>

upc_lock_t *lock; // local pointer

// to a shared entity

lock = upc_all_lock_alloc();

upc_lock(lock);

: // play with red balls

upc_unlock(lock);

for (;;) {

if (upc_lock_attempt(lock)) break;

: // do other stuff

}

: // play with red balls

upc_unlock(lock);

upc_lock_free(lock);

collective call

same result on

each thread

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

88SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC: Split-phase barrier

• Separate barrier completion point from waiting point

– this allows threads to continue computations once all others have

reached the completion point ameliorate load imbalance

– completion of upc_wait implies synchronization

– collective – all threads must execute sequence

• CAF:

– presently does not have this facility in statement form

– could implement using locks and event counts

execution sequence

completion point waiting point

for (…) a[n][i]= …;

upc_notify;

// do work (on b?) not

// involving a

upc_wait;

for (…) b[i]= b[i]+a[q][i];

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

89SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC: Memory consistency modes

• How are shared entities accessed?

– relaxed mode program assumes no concurrent accesses from different threads

– strict mode program ensures that accesses from different threads are separated,

and prevents code movement across these synchronization points

– relaxed is default; strict may have large performance penalty

• Options for synchronization mode selection

– variable level:

(at declaration)

– code section level:

strict shared int flag = 0;

relaxed shared [*] int c[THREADS][3];

c[q][i] = …;

flag = 1;

while (!flag) {…};

… = c[q][j];

T
h

re
a

d
 q

T
h

re
a

d
 p

{ // start of block

#pragma upc strict

… // block statements

}

// return to default mode

 program level

#include <upc_strict.h>

// or upc_relaxed.h

consistency mode on variable declaration overrides

code section or program level specification

q has same

value on

thread p as

on thread q

example for
a spin lock

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

and outlook

Author:

R. Bader

90SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

What strict memory consistency
does and doesn„t do for you

• „strict“ cannot prevent all race conditions

– example: „ABA“ race

• „strict“ does assure that changes on (complex) objects

– appear to be atomic to other threads

– appear in the same order on other threads

strict shared int flag;

int val;

flag = 0;

upc_barrier;

flag = 1;

flag = 0;

thread 0

upc_barrier;

val = flag;

thread 1

may end up
with 0 or 1

flag = 0;

upc_barrier;

flag = 1;

flag = 2;

upc_barrier;

val = flag;

val = flag;

may obtain (0, 1), (0, 2)

or (1, 2), but not (2, 1)

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

91SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Advanced Synchronization
Concepts

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html

o Partial synchronization

 mutual exclusion

 memory fences and atomic subroutines

 split-phase barrier

o Collective operations

o Some parallel patterns and hints on library design:

- parallelization concepts with and without halo cells

- work sharing; distributed structures

- procedure interfaces

o Hands-on session

92SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Collective functions (1)

• Two types:
– data redistribution (e.g., scatter,

gather)

– computation operations (reduce,
prefix, sort)

• Separate include file:

• Synchronization mode:
– constants of type upc_flag_t

• IN/OUT:

– refers to whether the specified
synchronization applies at the entry or
exit to the call

• Synchronization:

– NOSYNC – threads do not synchronize
at entry or exit

– MYSYNC – start processing of data
only if owning threads have entered
the call / exit function call only if all
local read/writes complete

– ALLSYNC – synchronize all threads at
entry / exit to function

• Combining modes:
– UPC_IN_NOSYNC | UPC_OUT_MYSYNC

– UPC_IN_NOSYNC same as
UPC_IN_NOSYNC | UPC_OUT_ALLSYNC

– 0 same as

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC

NOSYNC

UPC_ _ MYSYNC

ALLSYNC

IN

OUT

#include <upc_collective.h>

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

93SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Collectives (2): Example for
redistribution

• UPC Allscatter

– src has affinity to a single

thread

– i-th block of size nbytes is

copied to src with affinity to

thread i

• CAF:

– already supported by combined

array and coarray syntax

– „push“ variant:

– „pull“ variant:

simpler, but no asynchronous

execution possible

void upc_all_scatter (

shared void *dst,

shared const void *src,

size_t nbytes,

upc_flag_t sync_mode); if (this_image() == 2) then

do i = 1, num_images

b(1:sz)[i] = &

a((i-1)*sz+1:i*sz)

end do

end if

sync all

me = this_image()

b(1:sz) = &

a((me-1)*sz+1:me*sz)[2]

can be a

non-coarray

a
lls

c
a
tt

e
r

execution sequence

0

1

2

3

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

94SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Collectives (3): Reductions

• Reduction concept:
– distributed set of objects

– operation defined on type

– calculate destination

object in shared space

• Availability:

– UPC only

– CAF: need to roll your

own for now (future CAF may

include this feature)

• Reduction types

• Operations:

– are constants of type
upc_op_t

+

a
llr

e
d
u
c
e

C/UC – signed/unsigned char L/UL – signed/unsigned long

S/US – signed/unsigned short F/D/LD – float/double/long double

I/UI – signed/unsigned int

Numeric Logical User-defined function

UPC_ADD UPC_AND UPC_FUNC

UPC_MULT UPC_OR UPC_NONCOMM_FUNC

UPC_MAX UPC_XOR

UPC_MIN UPC_LOGAND

UPC_LOGOR

execution sequence

0

1

2

3

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

95SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Collectives (4): Reduction prototype

• src and dst may not be aliased

• replace T by type (C, UC, etc.)

• function argument will be NULL

unless user-defined function is
configured via op

void upc_all_reduceT(

shared void *restrict dst,

shared const void *restrict src,

upc_op_t op,

size_t nelems,

size_t blk_size,

T(*func)(T, T),

upc_flag_t flags);

destination and source, respectively

number of elements of type T

source pointer block size

if > 0

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

96SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

• Prefix reductions

– upc_all_prefix_reduceT()

– semantics:

for UPC_ADD,

thread i gets
(thread-dependent result)

Collectives (5): further functions

• Redistribution functions

– upc_all_broadcast()

– upc_all_gather_all()

– upc_all_gather()

– upc_all_exchange()

– upc_all_permute()

 consult the UPC language

specification for details

+

a
ll_

p
re

fi
x
_

re
d

u
c
e

execution sequence

0

1

2

3

+

i

k

kd
0

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

Author:

R. Bader

97SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Advanced Synchronization
Concepts

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Hybrid Programming

https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html

o Partial synchronization

 mutual exclusion

 memory fences and atomic subroutines

 split-phase barrier

o Collective operations

o Some parallel patterns and hints on library design:

- parallelization concepts with and without halo cells

- work sharing; distributed structures

- procedure interfaces

o Hands-on session

98SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Work sharing (3)
data exchange

• Halo data

– context: stencil evaluation

– example: Laplacian

(halo size is 1)

– data exchange (blue arrows)

required e.g. for iterative

updates

• CAF halo update

– uses „pull“ style

– what about „push“?

– 1-d data distribution: not the

most efficient way

global index
(1 … md) m m+1 m m+1

thread/

image me

thread/

image me+1

local index n-1 n 1 2

(CAF)

real(dp),allocatable :: a(:,:)[*]

integer :: me, n, md

me = this_image()

: ! determine n, md

allocate(a(md, n)[*])

: ! initialize a

: ! calculate stencil

sync all

if (me > 1) &

a(:,1) = a(:,n-1)[me-1]

if (me < num_images()) &

a(:,n) = a(:,2)[me+1]

: ! calculate next iteration

md

• Basic PGAS concepts
• UPC and CAF basic syntax
 Parallel Patterns and

Practices
• Hybrid Programming

Author:

R. Bader

99SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC: One-sided memory block transfer

• Available for efficiency

– operate in units of bytes

– use restricted pointer

arguments

• Note:

– CAF array transfers

should do this by default

src dst

src dst

thread p thread q upc_memcpy() (any thread)

upc_memget() (on q)
upc_memput() (on p)

(char) int

upc_memset() shared

private

void upc_memcpy(shared void *dst,

shared const void *src, size_t n);

void upc_memget(void *dst,

shared const void *src, size_t n);

void upc_memput(shared void *dst,

void *src, size_t n);

void upc_memset(shared void *dst,

int c, size_t n);

prototypes from upc.h

• Basic PGAS concepts
• UPC and CAF basic syntax
 Parallel Patterns and

Practices
• Hybrid Programming

Author:

R. Bader

100SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Work sharing (4)
data exchange avoiding haloed shared data

• Use following data layout

– does not require entire data field

to be shared

• Communication code

– maintains one-sided semantics,

but one more copy needed

thread me

thread me+1

MD

double a[N][MD];

shared [*] double

a_top[THREADS][MD],

a_bot[THREADS][MD];

N

if (MYTHREAD+1 < THREADS) {

upc_memput(&a_bot[MYTHREAD+1][0],

&a[N-2][0],MD);

}

if (MYTHREAD-1 > 0) {

upc_memput(&a_top[MYTHREAD-1][0],

&a[1][0],MD);

}

upc_barrier;

if (MYTHREAD > 0) {

upc_memget(&a[0][0],

&a_bot[MYTHREAD][0], MD);

}

if (MYTHREAD < THREADS) {

upc_memget(&a[N-1][0],

&a_top[MYTHREAD][0], MD);

}

stencil calculation

epoch ends

Note:

for 2-D blocking this is not fun. A strided

block transfer facility would be welcome.

• Basic PGAS concepts
• UPC and CAF basic syntax
 Parallel Patterns and

Practices
• Hybrid Programming

Author:

R. Bader

101SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Subprogram interface

• CAF coarray argument

– corank specification is always

assumed size

– restrictions to prevent copy-

in/out of coarray data:

actual argument must be a

coarray

if dummy is not assumed-shape,

actual must be contiguous

VALUE attribute prohibited for

dummy argument

• UPC shared argument

– assume local size is n

– cast to local pointer for safety of use

and performance if only local

accesses are required

– declarations with fixed block size > 1

also possible (default is 1, as usual)

subroutine subr(n,w,x,y)

integer :: n

real :: w(n)[n,*] ! Explicit shape

real :: x(n,*)[*] ! Assumed size

real :: y(:,:)[*] ! Assumed shape

:

end subroutine

void subr(int n,

shared float *w) {

int i;

float *wloc;

wloc = (float *) w;

for (i=0; i<n; i++) {

… = w[i] + …

}

// exchange data

upc_barrier;

// etc.

}

• Basic PGAS concepts
• UPC and CAF basic syntax
 Parallel Patterns and

Practices
• Hybrid Programming

Author:

R. Bader

102SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Using the interface

• CAF

– a: corank mismatch is

allowed (remapping inside

subroutine)

– c: assumed shape entity

may be discontiguous

• UPC

shared [*] float x[THREADS][NDIM]

int main(void) {

: // initialize x

upc_barrier;

subr(NDIM, (shared float *) x);

}

cast loss of

phase information

real :: a(ndim)[*], b(ndim,2)[*]

real, allocatable :: c(:,:,:)[:]

allocate(c(10,20,30)[*])

call subr(ndim, a, b, c(1,:,:))

• Basic PGAS concepts
• UPC and CAF basic syntax
 Parallel Patterns and

Practices
• Hybrid Programming

Author:

R. Bader

103SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Factory procedures

• CAF:

allocatable dummy argument

– actual argument: must be

allocatable, with matching type,

rank and corank

– procedure must be executed

with all images

• UPC:

shared pointer function result

– analogous functionality as for CAF is

illustrated

– remember: other allocation functions
upc_global_alloc (single thread

distributed entity), upc_alloc

(single thread shared entity) do not

synchronize

subroutine factory(wk, …)

real, allocatable :: wk(:)[:]

: ! determine size

allocate(wk(n)[*])

: ! fill wk with data

end subroutine

synchronizes

all images

shared *float factory(

shared float *wk, …) {

: // determine size

wk = (shared float *)

upc_all_alloc(THREADS,

sizeof(float)*n);

: // fill wk with data

return wk;

}

if block size

>1 supported

• Basic PGAS concepts
• UPC and CAF basic syntax
 Parallel Patterns and

Practices
• Hybrid Programming

Author:

R. Bader

104SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

CAF: subprogram-local coarrays

• Restrictions:
– no automatic coarrays

– function result cannot be a coarray

(avoid implicit SYNC ALL)

• Consequence:
– require either the SAVE attribute

allow e.g., invocation by image

subsets:

– or the ALLOCATABLE attribute:

requires execution by all images

allows recursive invocation, as

shown in example (distinct

entities are created)

– can also combine

ALLOCATABLE with SAVE

a single entity, no automatic

deallocation on return

subroutine foo(a)

real :: a(:)[*]

real, SAVE :: wk_loc(ndim)[*]

: ! work with wk_loc

end subroutine

storage preserved

throughout execution

if (this_image() < num) then

call foo(x)

else

call bar(x)

end if

recursive subroutine rec_process(a)

real :: a(:)

real, ALLOCATABLE :: wk_loc(:)[:]

allocate(wk_loc(n)[*])

:

if (.not. done) &

call rec_process(…)

end subroutine

may have coindexed

accesses to x in

both foo and bar

• Basic PGAS concepts
• UPC and CAF basic syntax
 Parallel Patterns and

Practices
• Hybrid Programming

Author:

R. Bader

105SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

CAF: Coindexed entities as
actual arguments

• Assumptions:

– dummy argument is not a coarray

– it is modified inside the subprogram

– therefore, typically copy-in/out will be required

 an additional synchronization rule

is needed

• Note:

– UPC does not allow

casting a remote shared

entity to a private one

execution sequence

p

a
q

r
a[q] = …

fo
o

c
o

m
p

le
te

d

• Basic PGAS concepts
• UPC and CAF basic syntax
 Parallel Patterns and

Practices
• Hybrid Programming

Author:

R. Bader

106SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Distributed Structures (1)

• Irregular data distribution

– use a data structure

– recursive processing

• UPC example:

– binary tree

– prerequisite: ordering relation

• Constructor for Tree object

– must be called by one thread only

– initialize storage for lock and data

components

typedef struct tree {

upc_lock_t *lk;

shared struct tree *left;

shared struct tree *right;

shared Content *data;

};

typedef struct tree Tree;

int lessthan(Content *a, Content *b);

shared Tree *Tree_init() {

shared Tree *this;

this = (shared Tree *)

upc_alloc(sizeof(Tree));

this->lk = upc_global_lock_alloc();

this->data = (shared Content *)

upc_alloc(sizeof(Content));

return this;

}

• Basic PGAS concepts
• UPC and CAF basic syntax
 Parallel Patterns and

Practices
• Hybrid Programming

regular „serial“ type

definition

Author:

R. Bader

107SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Distributed Structures (2)

• Concurrent population

– locking ensures race-free processing

void insert(shared Tree *this, Content *stuff) {

upc_lock(this->lk);

if (this->left) {

upc_unlock(this->lk);

if (lessthan((Content *) this->data, stuff)) {

insert(this->left, stuff);

} else {

insert(this->right, stuff);

}

} else {

this->left = Tree_init();

this->right = Tree_init();

upc_memput(this->data, stuff, sizeof(Content));

upc_unlock(this->lk);

}

}

copy object to

(remote) shared entity

invoke

constructor

• Basic PGAS concepts
• UPC and CAF basic syntax
 Parallel Patterns and

Practices
• Hybrid Programming

color thread number

Author:

R. Bader

108SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Distributed Structures (3)

• Assumption

– structure is written once or

rarely

– many operations performed on

entries, in access epochs

separated from insertions

– traversal must be executed by

all threads which called the

constructor to be complete

• CAF:

– cannot easily implement this

concept with coarrays

– shared objects on one image

only not supported

– klugey workaround using

pointer components of

coarrays is possible

void traverse(shared Tree *this,

Params *op) {

if (this->data) {

if (upc_threadof(this->data)

== MYTHREAD) {

process((Content *)this->data, op);

}

traverse(this->left, op);

traverse(this->right, op);

}

}

guarantee

locality

• Basic PGAS concepts
• UPC and CAF basic syntax
 Parallel Patterns and

Practices
• Hybrid Programming

Author:

R. Bader

109SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Third exercise:
Manual reduction and prefix reduction

• This exercise is required for Fortran programmers

– UPC programmers could also make use of library function

• Implement a global reduction facility for extended precision

floating point numbers

– suggested interface:

• Try the simplest implementation

– where do coarrays appear?

• What do you need to change if you want to calculate a prefix
reduction (caf_prefix_reduce(), same interface) instead?

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Exercises

• Hybrid Programming

real (dk) function caf_reduce(x, ufun)

real(dk) intent(in) :: x

interface

real(dk) function ufun(a, b)

real(dk), intent(in) :: a, b

end function

end interface

end function

user-provided

function

not a coarray

Reduction

110SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Fourth Exercise:
Heat conduction in 2 dimensions

• Make a copy of serial programs into your working directory

– cp ../skel/heat_serial.c heat_upc.c

– cp ../skel/heat_serial.f90 heat_caf.f90

• Work items for parallelization:

– domain (data) decomposition (suggestion: use a 1-D decomposition

for simplicity)

– decide on shared data including halo, or local data with separate

shared 1-D arrays for halo exchange (UPC only: use memory block

transfer functions)

– need a reduction operation to determine global convergence (use

the code from the previous exercise)

– halo exchange

– organization of debug printout routine

• Basic PGAS concepts
• UPC and CAF basic syntax
 Advanced synchronization

concepts
• Exercises

• Hybrid Programming

111SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Real Applications and
Hybrid Programming

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

o NAS parallel benchmarks
 Optimization strategies

 Hybrid concepts for optimization

o Hybrid programming
- MPI allowances for hybrid models

- Hybrid PGAS examples and performance/implementation comparison

o Hands-on session: hybrid

112SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

The eight NAS parallel benchmarks (NPBs) have been
written in various languages including hybrid for three

MG Multigrid Approximate the solution to a three-

dimensional discrete Poisson equation using

the V-cycle multigrid method

CG Conjugate

Gradient

Estimate smallest eigenvalue of sparse SPD

matrix using the inverse iteration with the

conjugate gradient method

FT Fast Fourier

Transform

Solve a three-dimensional PDE using the

fast Fourier transform (FFT)

IS Integer Sort Sort small integers using the bucket sort

algorithm

EP Embarrassingly

Parallel

Generate independent Gaussian random

variates using the Marsaglia polar method

BT

SP

LU

Block Tridiagonal

Scalar Pentadiag

Lower/Upper

Solve a system of PDEs using 3 different

algorithms

MZ

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

113SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

The NPBs in UPC are useful for
studying various PGAS issues

• Using customized communication to avoid hot-spots

– UPC Collectives do not support certain type of communication

patterns

• Blocking vs. Non-Blocking (Asynchronous) communication

– In FT and IS using non-blocking gave significantly worse performance

– In MG using non-blocking gave small improvement

• Benefits of message aggregation depends on the arch./interconnect

– In MG message aggregation is significantly better on Cray XT

5/SeaStar2 interconnect, but almost no difference is observable on

Sun Constellation Cluster/InfiniBand

• UPC – Shared Memory Programming studied in FT and IS

– Less communication but reduced memory utilization

• Mapping BUPC language-level threads to Pthreads and/or Processes

– Mix of processes and pthreads often gives the best performance

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

114SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Using customized communication to
avoid hot-spots

• UPC Collectives might not support certain type of communication

patterns (for example, vector reduction). Customized

communication is sometimes necessary!

• Collective communication naïve approach (FT example):

for (i=0; i<THREADS; i++)

upc_memget(… thread i …);

• Collective communication avoiding hot-spots:

for (i=0; i<THREADS; i++){

peer = (MYTHREAD + i) % THREADS;

upc_memget(… thread peer …);

}

• Communication performance difference can exceed 50%

(observed on Carver/NERSC – 2 quad-core Intel Nehalem cluster

with Infiniband Interconnect)

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

115SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Blocking vs. Non-Blocking
(Asynchronous) communication

• Berkeley UPC allows usage of non-blocking communication (for

efficient computation/communication overlap):

– upc_handle_t bupc_memget_async(void *dst, shared const void

*src, size_t nbytes)

– void bupc_waitsync(upc_handle_t handle); - wait for completion

– Asynchronous version of memcpy and memput also exist

• Not always beneficial:

– Non-blocking communication can inject large number of messages

into the network

– Lower levels of the network stack (firmware, switches) can employ

internal flow-control and reduce the bandwidth

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

116SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Blocking vs. Non-Blocking
(Asynchronous) communication (cont)

• FT – no communication/computation overlap possible, but non-

blocking communication can be used:

bupc_handle_t handles[THREADS];

for(i = 0; i < THREADS; i++) {

peer = (MYTHREAD+i) % THREADS;

handles[i] = bupc_memget_async(… thread peer …);

}

for(i=0; i < THREADS; i++)

bupc_waitsync(handles[i]);

• Using non-blocking communication, FT (also IS) experiences up to

60% communication performance degradation. For MG we detected

~2% performance increase.

• Slowdown is caused by a large number of messages injected into

the network (there is no computation that could overlap

communication and reduce the injection rate)

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

117SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

In addition to asynchronous, one can study strided
communication and message aggregation

• Using strided communication is generally an improvement

• Message aggregation reduces the number of messages, but

introduces the packing/unpacking overhead

• Message aggregation increases programming effort.

• Example:

Fine-grain communication

Thread A Thread B

for(i=0; i<n1; i++)

upc_memput(&k(i),

&u(i),

n2 * sizeof(double));

Message Aggregation

Thread A:

buff = pack(u);

upc_memput(&k(0),

&buff,

n1*n2*sizeof(double));

upc_barrier;

Thread B:

upc_barrier;

unpack(k);

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

118SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

MG message aggregation is significantly
better on Cray SeaStar2 interconnect

0

1

2

3

4

5

6

7

8

MG UPC MG UPC
Async

MG UPC
Async +

Strided Comm

MG UPC
Async +
Message

Aggregation

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

MG Optimizations - Cray XT 64 Cores - 8
Nodes, Class C

Communication

Computation

• MG message

aggregation

had almost no

difference on

Ranger

InfiniBand

interconnect

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

119SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

UPC – Shared Memory Programming
reduces communication time

• UPC initially designed for

distributed systems

• UPC capable of exploiting

shared memory (OMP-like)

programming style & avoiding

explicit communication

Master

thread

Parallel region –

worker threads

Master

thread

OMP – Shared

Memory style

MPI – Explicit

Communication

All-To-All

Communication

• Drawback: reduced memory utilization

• UPC thread are required to equally participate in shared-heap allocation

• In the UPC-shared memory model, only part of the heap allocated by

the master thread is used, resulting in memory underutilization

• Careful data placement capable of increasing memory utilization

• Berkeley is working on enabling uneven heap distribution in BUPC.

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

120SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Use of UPC shared memory reduced computation
time by removing a transpose operation in FT

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

OMP MPI UPC -
Explicit
Comm.

UPC -
Shared
Mem.

OMP MPI UPC -
Explicit
Comm.

UPC -
Shared
Mem.

IS FT

UPC,MPI Execution Time Normalized to OMP, 16 Cores AMD

comm

comp

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

121SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

BUPC language-level threads can be
mapped to Pthreads and/or Processes

• Pthreads – shared memory communication through shared

address space

• Processes – shared memory communication through shared

memory segments (POSIX, SYSV or mmap) called PSHM

• NPBs performance depend on Pthreads/Processes

– Pthreads share one network endpoint; PSHM - one network

endpoint per process

– Due to sharing of one network endpoint, pthreads experience

message throttling

– Processes (PSHM) can inject larger number of messages into the

network (large number of messages can sometimes decrease

overall bandwidth)

– PSHM avoids contention overhead when interacting with external

libraries/drivers

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

122SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Mix of processes and pthreads is often required
for achieving the best performance

0

0,2

0,4

0,6

0,8

1

1,2

1,4

PSHM Hybrid (1
Proc. Per
socket)

Pthreads PSHM Hybrid (1
Proc. Per
socket)

Pthreads PSHM Hybrid (1
Proc. Per
socket)

Pthreads

IS Class C MG Class C FT Class C

T
im

e
 N

o
rm

a
li

z
e

d
 t

o
 P

th
re

a
d

s

Ranger (AMD 4 Sockets x 4 Cores per node) - Performance Normalized
to Pthreads on 128 Cores

Coarse-Grained Comm. Fine-Grained Comm. Computation

For FT the hybrid approach (1 process per socket and

pthreads within a socket) is best and is a reasonable

approach for the other NPBs

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

123SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Some NAS Parallel Benchmarks have been written in
multi-zone hybrid versions (currently with OpenMP)

• Multi-zone versions of the NPSs
LU,SP, and BT are available from:

www.nas.nasa.gov/Resources/Software/software.html

MPI/OpenMP Version

Time step Sequential

Inter-zones MPI Processes

Exchange boundaries Call MPI

Intra zones OpenMP

Figure adapted from Gabriele Jost, et al., ParCFD2009 Tutorial

http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html
http://www.nas.nasa.gov/Resources/Software/software.html

124SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

• BT-MZ: (Block-tridiagonal Solver)

– Size of the zones varies widely:

• large/small about 20

• requires multi-level parallelism to achieve a good load-balance

• LU-MZ: (Lower-Upper Symmetric Gauss Seidel Solver)

– Size of the zones identical:

• no load-balancing required

• limited parallelism on outer level

• SP-MZ: (Scalar-Pentadiagonal Solver)

– Size of zones identical

• no load-balancing required

Hybrid coding can yield improved
performance for some benchmarks

Load-balanced on MPI
level: Pure MPI should

perform best

Pure MPI: Load-
balancing problems!

Good candidate for
MPI+OpenMP

Limited MPI
Parallelism:

MPI+OpenMP
increases

Parallelism

Adapted from Gabriele Jost, et al., ParCFD2009 Tutorial

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

125SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

PGAS languages can also be
combined with MPI for hybrid

• MPI is designed to allow coexistence with other parallel

programming paradigms and uses the same SPMD model as CAF:

 MPI and Coarrays can exist together in a program

• When mixing communications models, each will have its own

progress mechanism and associated rules/assumptions

• Deadlocks can happen if some processes are executing blocking

MPI operations while others are in “PGAS communication mode”

and waiting for images (e.g. sync all)

 "MPI phase" should end with MPI barrier, and a ”CAF phase" should

end with a CAF barrier to avoid communication deadlocks

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

126SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

There are differences between
Rice and Cray CAF

• CAF is becoming part of Fortran standard

• MPI indexes its processors from 0 to “number-of-processes – 1”

– Cray CAF indexes images from 1 to “num_images()”.

– Rice CAF indexes from 0 to “num_images() - 1”)

• Mixing OpenMP and CAF only works with Cray CAF

- Rice CAF interoperability still under development

- OpenMP threads can execute CAF PUT/GET operations

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

127SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

We give one example of hybrid
MPI and CAF interoperability

program MPI_and_CAF

integer :: ntasks,ierr,rank,size

integer,pointer,dimension(:) :: array

call MPI_Init(ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD,ntasks,ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD,rank,ierr)

size = 1000

allocate(array(1:size))

array = 1

call mpi_routine1(array)

call MPI_BARRIER(MPI_COMM_WORLD,ierr)

call caf_routine(rank,size,array)

call MPI_BARRIER(MPI_COMM_WORLD,ierr)

call mpi_routine2(array)

deallocate(array)

call MPI_FINALIZE(ierr)

end program MPI_and_CAF

subroutine caf_routine(mpi_rank,size,mpi_array)

integer :: mpi_rank,size,world_rank,world_size

integer,dimension(size) :: mpi_array

integer,allocatable :: co_array(:)[:]

SYNC ALL ! Full barrier; wait for all images

world_rank = THIS_IMAGE() ! equal to mpi_rank

world_size = NUM_IMAGES()

… ! some computation on mpi_array and co_array

SYNC ALL

end subroutine caf_routine

main.F90

caf.F90

building for Hopper/Franklin @ NERSC:

module swap PrgEnv-pgi PrgEnv-cray

ftn –static –O3 –h caf caf.F90

ftn –static –O3 mpi.F90

ftn –static –O3 main.F90

ftn –static –o exec caf.o mpi.o main.o

subroutine mpi_routine1…

subroutine mpi_routine2 … mpi.F90

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

128SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Hybrid MPI and UPC is still under
development on Cray platforms

• Exercise is to download and compare three hybrid MPI-UPC

versions of dot product

• Works on certain clusters but not yet on XT5 test platform

• The three coding examples vary the level of nesting and number of

instances of both models

• Flat model: provides a non-nested common MPI and UPC execution

where each process is a part of both the MPI and the UPC execution

• Nested-funneled model: provides an operational mode where only the

master process per group gets an MPI rank and can make MPI calls

• Nested-multiple model: provides a mode where every UPC process

gets its own MPI rank and can make MPI calls independently.

Dot product coding from “Hybrid Parallel Programming with MPI and Unified Parallel C”

by James Dinan, Pavan Balaji, Ewing Lusk, P. Sadayappan, and Rajeev Thakur

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

129SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Exercise: Download, run, and time a
hybrid MPI/CAF code example

• Code is the communication intensive routine of a plasma simulation

• The simulation follows the trajectories of charged particles in a torus

• Due to the parallel domain decomposition of the torus, a huge

number of particles have to be shifted at every iteration step from one

domain to another using MPI

•Typically, 10% of each process’ particles are sent to neighbor domain; 1%

goes to “rank+2” and only a small fraction further.

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

130SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Compare differences in reduced code MPI and MPI-
CAF benchmarks (coding/performance)

• MPI benchmark simulates the communication behavior of the code

• Iterates through an array of numbers in each domain with numbers

that are a multiple of x (e.g. 10) being sent to “rank+1” and numbers

which are a multiple of y (e.g. 100) being sent to “rank+2”

• The MPI-CAF benchmark follows exactly the algorithm but has been

improved exploiting one-sided communication and image control

techniques provided by CAF

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

131SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

The MPI version of the shifter benchmark

program MPI_CAF_ShifterBenchmark
……

call mpi_benchmark(..)

call MPI_BARRIER(MPI_COMM_WORLD,ierr)

call caf_benchmark(..)

end program MPI_CAF_ShifterBenchmark

subroutine mpi_benchmark()

100: outer_loop = outer_loop + 1

do m=m0,array_size ! use modulo operator on x and y for outer_loop==1

if(is_shifted(array(m))) then ! and just on y for outer_loop==2

send_counter = send_counter + 1

send_vector(send_counter) = m ! store position of sends

endif

MPI_Allreduce(send_counter,result) ! Stop when no numbers are sent

if(result == 0) exit ! by all processors

do i=1, send_counter ! pack the send array

send_array(i) = array(send_vector(i))

enddo

fill_remaining_holes(array)

MPI_Send_Recv(send_counter,recv_counter) ! send & recv new numbers

MPI_Send_Recv(send_array, recv_array,..)

do i=1, recv_counter ! add the received numbers to local array

array(a+i)=recv_array(i)

enddo

array_size = array_size - send_counter + recv_counter

m0 = .. ! adapt array size, and the array starting position of next iteration

enddo

end subroutine mpi_benchmark

main.F90

caf.F90

In order to precisely compare the performance of the MPI code vs. the CAF

implementation, the MPI and CAF algorithm have to be in the same executable.

caf_benchmark programming hints:

- use a multidimensional send-buffer (i.e., for each

possible destination fill a send-vector)

- this send-vector has a fixed length := s

- if length of send-buffer(dest) == s then fire up a

message to image “dest” and fill its receive queue

- for filling the 1D receive queue on a remote image

use image control statements to ensure

correctness (e.g. locks, critical sections, etc.)

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization

concepts
 Hybrid Programming

132SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Appendix

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html

o Additional material on exercises

o Abstract

o Presenters

o Literature

https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html
https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html
https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html
https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html
https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html
https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html
https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html
https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html
https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html
https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html
https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html
https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html
https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-PGAS.html

133SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

README – UPC

on Cray XT…: UPC / PGI

Initialization: module load bupc

Interactive PBS shell:

In general:

qsub -I -q debug -lmppwidth=4,mppnppn=4,walltime=00:30:00 -V

In the SC tutorial

qsub -I -q special -lmppwidth=4,mppnppn=4,walltime=00:30:00 -V

Again to the working directory:

cd $PBS_O_WORKDIR

Compilation:

upcc -O -pthreads=4 -o myprog myprog.c

Parallel Execution:

upcrun -n 1 -cpus-per-node 4 ./myprog

upcrun -n 2 -cpus-per-node 4 ./myprog

upcrun -n 4 -cpus-per-node 4 ./myprog

If your batch job was initiated

with 8 cores, i.e., with: -lmppwidth=8,mppnppn=4

upcrun -n 8 -cpus-per-node 4 ./myprog

Exercise 2

Exercise 3/4

Exercise 1

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

134SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

README – UPC

on Cray XT…: Cray UPC

Initialization: module switch PrgEnv-pgi PrgEnv-cray

Interactive PBS shell:

In general:

qsub -I -q debug -lmppwidth=4,mppnppn=4,walltime=00:30:00 -V

In the SC tutorial

qsub -I -q special -lmppwidth=4,mppnppn=4,walltime=00:30:00 -V

Again to the working directory:

cd $PBS_O_WORKDIR

Compilation:

cc -h upc -o myprog myprog.c

Parallel Execution:

aprun -n 1 -N 1 ./myprog

aprun -n 2 -N 2 ./myprog

aprun -n 4 -N 4 ./myprog

If your batch job was initiated

with 8 cores, i.e., with: -lmppwidth=8,mppnppn=4

aprun -n 8 -N 4 ./myprog

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

Exercise 2

Exercise 3/4

Exercise 1

135SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

README – UPC

on Cray XT…: Cray Fortran

Initialization: module switch PrgEnv-pgi PrgEnv-cray

Interactive PBS shell:

In general:

qsub -I -q debug -lmppwidth=4,mppnppn=4,walltime=00:30:00 -V

In the SC tutorial

qsub -I -q special -lmppwidth=4,mppnppn=4,walltime=00:30:00 -V

Again to the working directory:

cd $PBS_O_WORKDIR

Compilation:

crayftn -hcaf -o myprog myprog.f90

Parallel Execution:

aprun -n 1 -N 1 ./myprog

aprun -n 2 -N 2 ./myprog

aprun -n 4 -N 4 ./myprog

If your batch job was initiated

with 8 cores, i.e., with: -lmppwidth=8,mppnppn=4

aprun -n 8 -N 4 ./myprog

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

Exercise 2

Exercise 3/4

Exercise 1

136SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

hello_upc.c and
hello_caf.f90

#include <upc.h>

#include <stdio.h>

int main(int argc, char** argv)

{

if (MYTHREAD == 0) printf("hello world\n");

printf("I am thread number %d of %d threads\n",

MYTHREAD, THREADS);

return 0;

}

program hello

implicit none

integer :: myrank, numprocs

myrank = THIS_IMAGE()

numprocs = NUM_IMAGES()

if (myrank == 1) print *, 'hello world'

write (*,*) 'I am image number',myrank, &

& ' of ',numprocs,' images'

end program hello Exercise 1

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

137SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Dynamic entities:
triangular.f90

• Matrix object declaration and

initialization code

• Solution programs

available as

– ../solutions/triangular.f90

(Fortran)

– ../solutions/triangular.upc

(UPC)

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

type(tri_matrix), allocatable :: a(:)[:]

:

me = this_image() ; nproc = num_images()

rows_per_proc = n / nproc

if (mod(n, nproc) > 0) &

rows_per_proc = rows_per_proc + 1

allocate(a(rows_per_proc)[*])

! initialize matrix A(i, j) = i + j

i_local = 1

n_elem = 0

do i = me, n, nproc

allocate(a(i_local)%row(n - i + 1))

do j = 1, n - i + 1

a(i_local)%row(j) = real(i) + real(j)

end do

n_elem = n_elem + n - i + 1

i_local = i_local + 1

end do
Exercise 2

138SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Manual reduction:
mod_reduction_simple.f90

• Singleton coarray g as

module variable

• Prefix reduction

– pipelined execution („John Reid„s ladder“)

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

real(dk) function &

caf_reduce(x, ufun)

real(dk), intent(in) :: x

procedure(rf) :: ufun

if (this_image() == 1) then

g = x

sync images(*)

else

sync images(1)

critical

g[1] = ufun(x,g[1])

end critical

end if

sync all

caf_reduce = g[1]

sync all ! protect against

! subsequent write of g

end function caf_reduce

Exercise 3

real(dk) function &

caf_prefix_reduce(x, ufun)

real(dk), intent(in) :: x

procedure(rf) :: ufun

integer :: me

me = this_image()

if (me == 1) then

g = x

caf_prefix_reduce = x

else

sync images ((/me,me-1/))

g = ufun(x,g[me-1])

caf_prefix_reduce = g

end if

if (me < num_images()) &

sync images ((/me,me+1/))

sync all ! protect against

! subsequent write of g on 1

end function caf_prefix_reduce

139SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Manual reduction (2)

• Programs from previous

slide

– are not the most efficient

solutions

– alternative: „butterfly

pattern“

• Power-of-two version
– illustrative code based on tutorial

material by Bob Numrich

• Files for study:

– ../solutions/mod_reduction*

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

real(dk) function caf_reduce(x, ufun)

real(dk), intent(in) :: x

procedure(rf) :: ufun

real(kind=8) :: work

integer :: n,bit,i,mypal,dim,me

: ! dim is log2(num_images())

: ! dim == 0 trivial

g = x

bit = 1; me = this_image(g,1) - 1

do i=1, dim

mypal = xor(me,bit)

bit = shiftl(bit,1)

sync all

work = g[mypal+1]

sync all

g = ufun(g,work)

end do

caf_reduce = g

sync all ! against subsequent write on g

end function

i =

1

2

3

real(dk) :: g[*]

! global variable

140SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Appendix: Abstract

PGAS (Partitioned Global Address Space) languages offer both an

alternative to traditional parallelization approaches (MPI and OpenMP), and

the possibility of being combined with MPI for a multicore hybrid

programming model. In this tutorial we cover PGAS concepts and two

commonly used PGAS languages, Coarray Fortran (CAF, as specified in

the Fortran standard) and the extension to the C standard, Unified

Parallel C (UPC).

Exercises exercises to illustrate important concepts are interspersed with

the lectures. Attendees will be paired in groups of two to accommodate

attendees without laptops. Basic PGAS features, syntax for data

distribution, intrinsic functions and synchronization primitives are discussed.

Additional topics include parallel programming patterns, future extensions

of both CAF and UPC, and hybrid programming. In the hybrid programming

section we show how to combine PGAS languages with MPI, and contrast

this approach to combining OpenMP with MPI. Real applications using

hybrid models are given.

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

141SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Presenters

• Dr. Alice Koniges is a Physicist and Computer Scientist at the National Energy Research

Scientific Computing Center (NERSC) at the Berkeley Lab. Previous to working at the

Berkeley Lab, she held various positions at the Lawrence Livermore National Laboratory,

including management of the Lab‟s institutional computing. She recently led the effort to

develop a new code that is used predict the impacts of target shrapnel and debris on the

operation of the National Ignition Facility (NIF), the world‟s most powerful laser. Her

current research interests include parallel computing and benchmarking, arbitrary

Lagrange Eulerian methods for time-dependent PDE‟s, and applications in plasma physics

and material science. She was the first woman to receive a PhD in Applied and

Computational Mathematics at Princeton University and also has MSE and MA degrees

from Princeton and a BA in Applied Mechanics from the University of California, San

Diego. She is editor and lead author of the book “Industrial Strength Parallel Computing,”

(Morgan Kaufmann Publishers 2000) and has published more than 80 refereed technical

papers.

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

142SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Presenters

• Dr. Katherine Yelick is the Director of the National Energy Research Scientific

Computing Center (NERSC) at Lawrence Berkeley National Laboratory and a Professor of

Electrical Engineering and Computer Sciences at the University of California at Berkeley.

She is the author or co-author of two books and more than 100 refereed technical papers

on parallel languages, compilers, algorithms, libraries, architecture, and storage. She co-

invented the UPC and Titanium languages and demonstrated their applicability across

architectures through the use of novel runtime and compilation methods. She also co-

developed techniques for self-tuning numerical libraries, including the first self-tuned

library for sparse matrix kernels which automatically adapt the code to properties of the

matrix structure and machine. Her work includes performance analysis and modeling as

well as optimization techniques for memory hierarchies, multicore processors,

communication libraries, and processor accelerators. She has worked with

interdisciplinary teams on application scaling, and her own applications work includes

parallelization of a model for blood flow in the heart. She earned her Ph.D. in Electrical

Engineering and Computer Science from MIT and has been a professor of Electrical

Engineering and Computer Sciences at UC Berkeley since 1991 with a joint research

appointment at Berkeley Lab since 1996. She has received multiple research and teaching

awards and is a member of the California Council on Science and Technology and a

member of the National Academies committee on Sustaining Growth in Computing

Performance.

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

143SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Presenters

• Dr. Rolf Rabenseifner studied mathematics and physics at the University of Stuttgart.

Since 1984, he has worked at the High-Performance Computing-Center Stuttgart (HLRS).

He led the projects DFN-RPC, a remote procedure call tool, and MPI-GLUE, the first

metacomputing MPI combining different vendor's MPIs without losses to full MPI

functionality. In his dissertation, he developed a controlled logical clock as global time for

trace-based profiling of parallel and distributed applications. Since 1996, he has been a

member of the MPI-2 Forum and since December 2007 he is in the steering committee of

the MPI-3 Forum. From January to April 1999, he was an invited researcher at the Center

for High-Performance Computing at Dresden University of Technology. Currently, he is

head of Parallel Computing - Training and Application Services at HLRS. He is involved in

MPI profiling and benchmarking e.g., in the HPC Challenge Benchmark Suite. In recent

projects, he studied parallel I/O, parallel programming models for clusters of SMP nodes,

and optimization of MPI collective routines. In workshops and summer schools, he

teaches parallel programming models in many universities and labs in Germany.

– Homepage: http://www.hlrs.de/people/rabenseifner/

– List of publications: https://fs.hlrs.de//projects/rabenseifner/publ/

– International teaching: https://fs.hlrs.de//projects/rabenseifner/publ/#tutorials

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

144SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Presenters

• Dr. Reinhold Bader studied physics and mathematics at the Ludwigs-Maximilians

University in Munich, completing his studies with a PhD in theoretical solid state physics in

1998. Since the beginning of 1999, he has worked at Leibniz Supercomputing Centre

(LRZ) as a member of the scientific staff, being involved in HPC user support,

procurements of new systems, benchmarking of prototypes in the context of the PRACE

project, courses for parallel programming, and configuration management for the HPC

systems deployed at LRZ. As a member of the German delegation to WG5, the

international Fortran Standards Committee, he also takes part in the discussions on

further development of the Fortran language. He has published a number of contributions

to ACMs Fortran Forum and is responsible for development and maintenance of the

Fortran interface to the GNU Scientific Library.

Sample of national teaching:

– LRZ Munich / RRZE Erlangen 2001-2010 (5 days) - G. Hager, R. Bader et al: Parallel

Programming and Optimization on High Performance Systems

– LRZ Munich (2009) (5 days) - R. Bader: Advanced Fortran topics - object-oriented

programming, design patterns, coarrays and C interoperability

– LRZ Munich (2010) (1 day) - A. Block and R. Bader: PGAS programming with coarray

Fortran and UPC

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

145SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Presenters

• Dr. David Eder is a computational physicist and group leader at the Lawrence Livermore

National Laboratory in California. He has extensive experience with application codes for

the study of multiphysics problems. His latest endeavors include ALE (Arbitrary Lagrange

Eulerian) on unstructured and block-structured grids for simulations that span many orders

of magnitude. He was awarded a research prize in 2000 for use of advanced codes to

design the National Ignition Facility 192 beam laser currently under construction. He has a

PhD in Astrophysics from Princeton University and a BS in Mathematics and Physics from

the Univ. of Colorado. He has published approximately 80 research papers.

• Basic PGAS concepts
• UPC and CAF basic syntax
• Advanced synchronization
• Hybrid Programming
 Appendix

● Exercises ●Presenters
● Abstract ● Literature

146SC10 Tutorial S10 © Koniges, Yelick, Rabenseifner, Bader, Eder & others

Literature

• UPC references

– UPC Language specification, by the UPC Consortium:

http://upc.gwu.edu/docs/upc_specs_1.2.pdf

– UPC Manual, by Sébastien Chauvin, Proshanta Saha, François Cantonnet,

Smita Annareddy, Tarek El-Ghazawi, May 2005

http://upc.gwu.edu/downloads/Manual-1.2.pdf

– UPC Distributed Memory Programming, by Tarek El-Ghazawi, Bill Carlson,

Thomas Sterling, and Katherine Yelick, Wiley & Sons, June 2005

• Coarray references

– Coarrays in the next Fortran Standard, by John Reid
WG5 paper N1824, April 21, 2010,
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf

– Fortran 2008 draft international standard

– Coarray compendium, by Andy Vaught, http://www.g95.org/compendium.pdf

http://upc.gwu.edu/docs/upc_specs_1.2.pdf
http://upc.gwu.edu/docs/upc_specs_1.2.pdf
http://upc.gwu.edu/docs/upc_specs_1.2.pdf
http://upc.gwu.edu/downloads/Manual-1.2.pdf
http://upc.gwu.edu/downloads/Manual-1.2.pdf
http://upc.gwu.edu/downloads/Manual-1.2.pdf
http://upc.gwu.edu/downloads/Manual-1.2.pdf
http://upc.gwu.edu/downloads/Manual-1.2.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
http://www.g95.org/compendium.pdf
http://www.g95.org/compendium.pdf

